3,717 research outputs found

    GRAIL – Grid Access and Instrumentation Tool

    Get PDF
    Since the release of Globus Toolkit 4 Web services enrich the world of Grid Computing. They provide methods to develop modular Grid applications which can be parallelized easily. The access to Web services is mostly solved by complex command line tools which need a good deal of knowledge of the underlaying Grid technologies. GRAIL is intended to fill the gap between existing Grid access methods and both the developer who wants to utilize the Grid for own developments and the user who wants to access the Grid without much additional knowledge. It simplifies the access and the testing of Web services for the Globus Grid middleware. GRAIL provides an easy to use graphical user interface for executing Web services and enables the user to construct complex relationships between services to realize parallel execution. The underlying framework allows an easy integration of any Web service or other arbitrary task without much additional effort for the developer. Existing technologies, shipped with the Globus Toolkit, are seamlessly integrated into GRAIL

    Parametric infrared tunable laser system

    Get PDF
    A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further

    Graphene on Pt(111): Growth and substrate interaction

    Get PDF
    In situ low-energy electron microscopy (LEEM) of graphene growth combined with measurements of the graphene structure and electronic band structure has been used to study graphene on Pt (111). Growth by carbon segregation produces macroscopic monolayer graphene domains extending continuously across Pt (111) substrate steps and bounded by strongly faceted edges. LEEM during cooling from the growth temperature shows the propagation of wrinkles in the graphene sheet, driven by thermal stress. The lattice mismatch between graphene and Pt (111) is accommodated by moiré structures with a large number of different rotational variants, without a clear preference for a particular interface geometry. Fast and slow growing graphene domains exhibit moiré structures with small [e.g., (3X3) G, (6X6) R2G, and (2X2) R4] and large unit cells [e.g., (44 x44) R15G, (52x52) R14G, and (8x8) G], respectively. A weak substrate coupling, suggested by the growth and structural properties of monolayer graphene on Pt (111), is confirmed by maps of the band structure, which is close to that of isolated graphene aside from minimal hole doping due to charge transfer from the metal. Finally, the decoupled graphene monolayer on Pt (111) appears impenetrable to carbon diffusion, which self-limits the graphene growth at monolayer thickness. Thicker graphene domains, which can form at boundaries between monolayer domains, have been used to characterize the properties of few-layer graphene on Pt (111)

    Oblique stacking of three-dimensional dome islands in Ge/Si multilayers

    Get PDF
    The organization of Ge "dome" islands in Ge/Si multilayers has been investigated by cross-sectional transmission electron microscopy. Ge domes are found to spontaneously arrange in oblique stacks, replicating at a well-defined angle from one bilayer to the next. The formation of oblique island stacks is governed by a complex interplay of surface strain, generated by the already buried islands, and surface curvature, caused by the inherent tendency of large domes to carve out material from the surrounding planar substrate. (C) 2001 American Institute of Physics

    Graphene on Pt(111): Growth and substrate interaction

    Get PDF
    In situ low-energy electron microscopy (LEEM) of graphene growth combined with measurements of the graphene structure and electronic band structure has been used to study graphene on Pt (111). Growth by carbon segregation produces macroscopic monolayer graphene domains extending continuously across Pt (111) substrate steps and bounded by strongly faceted edges. LEEM during cooling from the growth temperature shows the propagation of wrinkles in the graphene sheet, driven by thermal stress. The lattice mismatch between graphene and Pt (111) is accommodated by moiré structures with a large number of different rotational variants, without a clear preference for a particular interface geometry. Fast and slow growing graphene domains exhibit moiré structures with small [e.g., (3X3) G, (6X6) R2G, and (2X2) R4] and large unit cells [e.g., (44 x44) R15G, (52x52) R14G, and (8x8) G], respectively. A weak substrate coupling, suggested by the growth and structural properties of monolayer graphene on Pt (111), is confirmed by maps of the band structure, which is close to that of isolated graphene aside from minimal hole doping due to charge transfer from the metal. Finally, the decoupled graphene monolayer on Pt (111) appears impenetrable to carbon diffusion, which self-limits the graphene growth at monolayer thickness. Thicker graphene domains, which can form at boundaries between monolayer domains, have been used to characterize the properties of few-layer graphene on Pt (111)

    Impatience and Uncertainty: Experimental Decisions Predict Adolecents' Field Behavior

    Get PDF
    We study risk attitudes, ambiguity attitudes, and time preferences of 661 children and adolescents, aged ten to eighteen years, in an incentivized experiment. We relate experimental choices to field behavior. Experimental measures of impatience are found to be significant predictors of health related field behavior and saving decisions. In particular, more impatient children and adolescents are more likely to spend money on alcohol and cigarettes, have a higher body mass index (BMI) and are less likely to save money. Experimental measures for risk and ambiguity attitudes are only weak predictors of field behavior

    A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks

    Full text link
    Approximate solutions of the chemical master equation and the chemical Fokker-Planck equation are an important tool in the analysis of biomolecular reaction networks. Previous studies have highlighted a number of problems with the moment-closure approach used to obtain such approximations, calling it an ad-hoc method. In this article, we give a new variational derivation of moment-closure equations which provides us with an intuitive understanding of their properties and failure modes and allows us to correct some of these problems. We use mixtures of product-Poisson distributions to obtain a flexible parametric family which solves the commonly observed problem of divergences at low system sizes. We also extend the recently introduced entropic matching approach to arbitrary ansatz distributions and Markov processes, demonstrating that it is a special case of variational moment closure. This provides us with a particularly principled approximation method. Finally, we extend the above approaches to cover the approximation of multi-time joint distributions, resulting in a viable alternative to process-level approximations which are often intractable.Comment: Minor changes and clarifications; corrected some typo

    Structurally adaptive space crane concept for assembling space systems on orbit

    Get PDF
    Many future human space exploration missions will probably require large vehicles that must be assembled on orbit. Thus, a device that can move, position, and assemble large and massive spacecraft components on orbit becomes essential for these missions. A concept is described for such a device: a space crane concept that uses erectable truss hardware to achieve high-stiffness and low-mass booms and uses articulating truss joints that can be assembled on orbit. The hardware has been tested and shown to have linear load-deflection response and to be structurally predictable. The hardware also permits the crane to be reconfigured into different geometries to satisfy future assembly requirements. A number of articulating and rotary joint concepts have been sized and analyzed, and the results are discussed. Two strategies were proposed to suppress motion-induced vibration: placing viscous dampers in selected truss struts and preshaping motion commands. Preliminary analyses indicate that these techniques have the potential to greatly enhance structural damping

    Impatience and Uncertainty: Experimental Decisions Predict Adolescents' Field Behavior

    Get PDF
    We study risk attitudes, ambiguity attitudes, and time preferences of 661 children and adolescents, aged ten to eighteen years, in an incentivized experiment. We relate experimental choices to field behavior. Experimental measures of impatience are found to be significant predictors of health related field behavior and saving decisions. In particular, more impatient children and adolescents are more likely to spend money on alcohol and cigarettes, have a higher body mass index (BMI) and are less likely to save money. Experimental measures for risk and ambiguity attitudes are only weak predictors of field behavior.experiments with children and adolescents, risk, ambiguity, time preferences, health status, savings, external validity, field behavior
    corecore